Some results about a conjecture on identifying codes in complete suns

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some difference results on Hayman conjecture and uniqueness

In this paper, we show that for any finite order entire function $f(z)$, the function of the form $f(z)^{n}[f(z+c)-f(z)]^{s}$ has no nonzero finite Picard exceptional value for all nonnegative integers $n, s$ satisfying $ngeq 3$, which can be viewed as a different result on Hayman conjecture. We also obtain some uniqueness theorems for difference polynomials of entire functions sharing one comm...

متن کامل

Some results on $L$-complete lattices

The paper deals with special types of $L$-ordered sets, $L$-fuzzy complete lattices, and fuzzy directed complete posets.First, a theorem for constructing monotone maps is proved, a characterization for monotone maps on an $L$-fuzzy complete lattice is obtained, and it's proved that if $f$ is a monotone map on an $L$-fuzzy complete lattice $(P;e)$, then the least fixpoint of $f$ is meet of a spe...

متن کامل

Some New Results on Liu’s Conjecture

Consider the problem of scheduling n tasks with precedence constraint ≺ on m parallel processors so as to minimize the makespan. Let ω and ω′ be the makespans of the optimal nonpreemptive and optimal preemptive schedules, respectively. Liu’s conjecture states that ω ω′ ≤ 2m m+1 . In this paper, we present a simple proof of the conjecture for ≺= ∅, and give an improved bound closer to that in th...

متن کامل

On Lee's conjecture and some results

S.M. Lee proposed the conjecture: for any n > 1 and any permutation f in S(n), the permutation graph P (Pn, f) is graceful. For any integer n > 1 and permutation f in S(n), we discuss the gracefulness of the permutation graph P (Pn, f) if f = ∏l−1 k=0(m + 2k, m + 2k + 1), and ∏l−1 k=0(m+4k, m+4k +2)(m+4k +1, m+4k +3) for any positive integers m and l.

متن کامل

some difference results on hayman conjecture and uniqueness

in this paper, we show that for any finite order entire function $f(z)$, the function of the form $f(z)^{n}[f(z+c)-f(z)]^{s}$ has no nonzero finite picard exceptional value for all nonnegative integers $n, s$ satisfying $ngeq 3$, which can be viewed as a different result on hayman conjecture. we also obtain some uniqueness theorems for difference polynomials of entire functions sharing one comm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Transactions in Operational Research

سال: 2016

ISSN: 0969-6016

DOI: 10.1111/itor.12320